Online Multicast Traffic Engineering for Software-Defined Networks
نویسندگان
چکیده
Previous research on SDN traffic engineering mostly focuses on static traffic, whereas dynamic traffic, though more practical, has drawn much less attention. Especially, online SDN multicast that supports IETF dynamic group membership (i.e., any user can join or leave at any time) has not been explored. Different from traditional shortest-path trees (SPT) and graph theoretical Steiner trees (ST), which concentrate on routing one tree at any instant, online SDN multicast traffic engineering is more challenging because it needs to support dynamic group membership and optimize a sequence of correlated trees without the knowledge of future join and leave, whereas the scalability of SDN due to limited TCAM is also crucial. In this paper, therefore, we formulate a new optimization problem, named Online Branch-aware Steiner Tree (OBST), to jointly consider the bandwidth consumption, SDN multicast scalability, and rerouting overhead. We prove that OBST is NP-hard and does not have a |Dmax| -competitive algorithm for any > 0, where |Dmax| is the largest group size at any time. We design a |Dmax|competitive algorithm equipped with the notion of the budget, the deposit, and Reference Tree to achieve the tightest bound. The simulations and implementation on real SDNs with YouTube traffic manifest that the total cost can be reduced by at least 25% compared with SPT and ST, and the computation time is small for massive SDN.
منابع مشابه
Multi-Tree Multicast Traffic Engineering for Software-Defined Networks
Although Software-Defined Networking (SDN) enables flexible network resource allocations for traffic engineering, current literature mostly focuses on unicast communications. Compared to traffic engineering for multiple unicast flows, multicast traffic engineering for multiple trees is very challenging not only because minimizing the bandwidth consumption of a single multicast tree by solving t...
متن کاملA Novel Multicast Tree Construction Algorithm for Multi-Radio Multi-Channel Wireless Mesh Networks
Many appealing multicast services such as on-demand TV, teleconference, online games and etc. can benefit from high available bandwidth in multi-radio multi-channel wireless mesh networks. When multiple simultaneous transmissions use a similar channel to transmit data packets, network performance degrades to a large extant. Designing a good multicast tree to route data packets could enhance the...
متن کاملScalable Steiner Tree for Multicast Communications in Software-Defined Networking
Software-Defined Networking (SDN) enables flexible network resource allocations for traffic engineering, but at the same time the scalability problem becomes more serious since traffic is more difficult to be aggregated. Those crucial issues in SDN have been studied for unicast but have not been explored for multicast traffic, and addressing those issues for multicast is more challenging since ...
متن کاملDual-structure Data Center Multicast Using Software Defined Networking
Data center applications use multicast as an effective method to reduce bandwidth cost. However, traditional multicast protocols designed for IP networks are usually bottlenecked by the limited state capacity on switches. In this paper, we propose a scalable multicast solution on fat tree networks based on the observation that data center multicast traffic has strong heterogeneity. We propose t...
متن کاملA New Method based on Intelligent Water Drops for Multicast Routing in Wireless Mesh Networks
In recent years a new type of wireless networks named wireless mesh networks has drawn the attention of researchers. In order to increase the capacity of mesh network, nodes are equipped with multiple radios tuned on multiple channels emerging multi radio multi channel wireless mesh networks. Therefore, the main challenge of these networks is how to properly assign the channels to the radios. O...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.00110 شماره
صفحات -
تاریخ انتشار 2017